[article]
| Titre : |
Design of a lab-scale rotary cavity-type solar reactor for continuous thermal dissociation of volatile oxides under reduced pressure |
| Type de document : |
texte imprimé |
| Auteurs : |
Marc Chambon, Auteur ; Stéphane Abanades, Auteur ; Flamant, Gilles, Auteur |
| Année de publication : |
2011 |
| Article en page(s) : |
pp. [021006/1-7] |
| Note générale : |
Energie Solaire |
| Langues : |
Anglais (eng) |
| Mots-clés : |
Chemical reactors Solar absorber-convertors heating radiation Zinc compounds |
| Index. décimale : |
621.47 |
| Résumé : |
A high-temperature lab-scale solar reactor prototype was designed, constructed and operated, allowing continuous ZnO thermal dissociation under controlled atmosphere at reduced pressure. It is based on a cavity-type rotating receiver absorbing solar radiation and composed of standard refractory materials. The reactant oxide powder is injected continuously inside the cavity and the produced particles (Zn) are recovered in a downstream ceramic filter. Dilution/quenching of the product gases with a neutral gas yields Zn nanoparticles by condensation. The solar thermal dissociation of ZnO was experimentally achieved, the reaction yields were quantified, and a first concept of solar reactor was qualified. The maximum yield of particles recovery in the filter was 21% and the dissociation yield was up to 87% (Zn weight content in the final powder) for a 5 NL/min neutral gas flow-rate (typical dilution ratio of 300).
|
| DEWEY : |
621.47 |
| ISSN : |
0199-6231 |
| En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] |
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 2 (Mai 2010) . - pp. [021006/1-7]
[article] Design of a lab-scale rotary cavity-type solar reactor for continuous thermal dissociation of volatile oxides under reduced pressure [texte imprimé] / Marc Chambon, Auteur ; Stéphane Abanades, Auteur ; Flamant, Gilles, Auteur . - 2011 . - pp. [021006/1-7]. Energie Solaire Langues : Anglais ( eng) in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 2 (Mai 2010) . - pp. [021006/1-7]
| Mots-clés : |
Chemical reactors Solar absorber-convertors heating radiation Zinc compounds |
| Index. décimale : |
621.47 |
| Résumé : |
A high-temperature lab-scale solar reactor prototype was designed, constructed and operated, allowing continuous ZnO thermal dissociation under controlled atmosphere at reduced pressure. It is based on a cavity-type rotating receiver absorbing solar radiation and composed of standard refractory materials. The reactant oxide powder is injected continuously inside the cavity and the produced particles (Zn) are recovered in a downstream ceramic filter. Dilution/quenching of the product gases with a neutral gas yields Zn nanoparticles by condensation. The solar thermal dissociation of ZnO was experimentally achieved, the reaction yields were quantified, and a first concept of solar reactor was qualified. The maximum yield of particles recovery in the filter was 21% and the dissociation yield was up to 87% (Zn weight content in the final powder) for a 5 NL/min neutral gas flow-rate (typical dilution ratio of 300).
|
| DEWEY : |
621.47 |
| ISSN : |
0199-6231 |
| En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] |
|